Tumor suppressor von Hippel-Lindau (VHL) stabilization of Jade-1 protein occurs through plant homeodomains and is VHL mutation dependent.
نویسندگان
چکیده
The von Hippel-Lindau (VHL) gene is the major renal cancer gene in adults. The mechanism of renal tumor suppression by VHL protein is only partly elucidated. VHL loss increases expression of the hypoxia-inducible factor alpha transcription factors. However, clinical and biochemical data indicate that the hypoxia-inducible factors are necessary but not sufficient for renal tumorigenesis, which suggests other VHL effector pathways are involved. Jade-1 protein interacts strongly with VHL and is most highly expressed in renal proximal tubules, precursor cells of renal cancer. Short-lived Jade-1 protein contains plant homeodomain (PHD) and candidate PEST degradation motifs and is substantially stabilized by VHL. The effect of VHL on Jade-1 protein abundance and relative protein stability was further examined in immunoblots and metabolic labeling experiments using two time points. VHL-Jade-1 binding was tested in coimmunoprecipitations. In cotransfection studies with wild-type VHL, the Jade-1 PHD-extended PHD module, not the candidate PEST domain, was required for full VHL-mediated stabilization. This module is also found in leukemia transcription factors AF10 and AF17, as well as closely related Jade-like proteins, which suggests all might be VHL regulated. Intriguingly, naturally occurring truncations and mutations of VHL affected wild-type Jade-1 binding and stabilization. Although the VHL beta domain was sufficient for Jade-1 binding, both the alpha and beta domains were required for Jade-1 stabilization. Thus, truncating VHL mutations, which are severe and associated with renal cancer development, prevented Jade-1 stabilization. Moreover, well-controlled cotransfection and metabolic labeling experiments revealed that VHL missense mutations that cause VHL disease without renal cancer, such as Tyr98His and Tyr112His, stabilized Jade-1 fully. In contrast, like the VHL truncations, VHL missense mutations commonly associated with renal cancer, such as Leu118Pro or Arg167Trp, did not stabilize Jade-1 fully. Therefore, loss of Jade-1 stability may correlate with renal cancer risk. Endogenous Jade-1 in stable renal cancer lines also exhibited VHL mutation-dependent regulation. As in the cotransfections, VHL truncations did not increase endogenous Jade-1 abundance, whereas the VHL missense mutations tested partially increased Jade-1 expression. Additional studies with non-PHD proteins indicated that Jade-1 stabilization by VHL is highly specific. Fibronectin was not stabilized like Jade-1 by VHL, nor were candidate VHL interactors from a yeast screen. Thus, protein stabilization likely reflects the biological activity of largely intact VHL protein on the PHD-extended PHD module of Jade-1. Dysregulation of the VHL protein stabilization pathway or of Jade-1 itself may therefore contribute to VHL renal disease and renal cancer pathogenesis.
منابع مشابه
Beta-catenin gets jaded and von Hippel-Lindau is to blame.
Numerous studies have pointed to interactions between the tumor suppressor von Hippel-Lindau (VHL) and the oncogenic Wnt-beta-catenin signaling cascade; however, the mechanism of this crosstalk has remained elusive. Among other roles, VHL can promote the stabilization of Jade-1. Now, recent findings provide compelling evidence that Jade-1 ubiquitylates beta-catenin, leading to its degradation. ...
متن کاملThe von Hippel-Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal.
The inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene predisposes affected individuals to the human VHL cancer syndrome and is associated with sporadic renal cell carcinomas (RCC) and brain hemangioblastomas. VHL-negative 786-0 RCC cells are tumorigenic in nude mice which is suppressed by the reintroduction of VHL. Remarkably, this occurs without affecting the growth rate and ce...
متن کاملSomatic von Hippel-Lindau gene mutations detected in sporadic endolymphatic sac tumors.
Endolymphatic sac tumors (ELSTs) occur sporadically or in association with an autosomal dominantly inherited tumor syndrome, von Hippel-Lindau (VHL) disease. In VHL disease, a germline mutation of the VHL tumor suppressor gene is inherited, and loss of function of the wild-type allele occurs through genetic deletion with subsequent development of neoplastic growth. Genetic alterations associate...
متن کاملThe von Hippel-Lindau tumor suppressor targets to mitochondria.
Subcellular localization of von Hippel-Lindau (VHL) tumor suppressor may clarify its role in tumorigenesis. In rat kidney, we observed a granular cytoplasmic immunostaining of VHL, as seen in human tissues. The green fluorescent protein (GFP)-tagged VHL also appeared as cytoplasmic granules in vitro and was colocalized with a mitochondrion-selective dye. Immunogold electron microscopy localized...
متن کاملEndothelial function of von Hippel-Lindau tumor suppressor gene: control of fibroblast growth factor receptor signaling.
von Hippel-Lindau (VHL) disease results from germline and somatic mutations in the VHL tumor suppressor gene and is characterized by highly vascularized tumors. VHL mutations lead to stabilization of hypoxia-inducible factor (HIF), which up-regulates proangiogenic factors such as vascular endothelial growth factor (VEGF). This pathway is therefore believed to underlie the hypervascular phenotyp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 64 4 شماره
صفحات -
تاریخ انتشار 2004